Realtime
Collaboration

with Firebase

About This Talk

This talk condenses lessons learned while
implementing a realtime rich text editing system
at Celtx.

It was presented live to the members of the NDev
software development community in 2019 as part
of NDev meetup #33.

About me
Mike Burton

Senior dev at Celtx

Primary for

Terrible

realtime collaboration .
Cartoonist

Celtx

Realtime-collaborative rich
text editors for multiple
media industries

Realtime
Collaboration

TWO or more users
changing the same data
at the same time

The Two Generals Problem

How do we know our collaborators have
received all of our messages?

We send a message

They acknowledge

We acknowledge their ACK
They ACK our ACK-ACK

What do we know for sure? This is the
Two Generals Problem

W

The Two Generals Problem was the
first computer communication
problem to be proved to be
unsolvable.

Data Models

Operational Transformations,
Conflict-Free Replicated Data Types,
And Beyond

Operational Transformations

Focuses on operations

Causality Preservation and Convergence
Operations are context-dependent
Inclusive or Exclusive

Many implementations and extensions, not
all of which guarantee convergence!

Example: Google/Apache Wave

"ABCDE"
0,0 .
. . . Client C " S *. Server
Participants in the wave / /
. "ABCE" ._‘ "ACDE" .,‘
may take different paths 1, 0.1
through the state space. & L
*
2,0 1{_1 "ACE" 0,2
When composed, however, /
the operations converge. 50 2 Ls 03
o s
Herec+s’and s+ ¢, for a0 o)2 s
example, lead to the same /
state: (1,1) “ACE” x
4,\ 32 2,3
»
4,2 3,3
4,3

Source: Google Wave Operational Transformation white paper
https://svn.apache.org/repos/asf/incubator/wave/whitepapers/operational-transform/operational-transform.html

https://svn.apache.org/repos/asf/incubator/wave/whitepapers/operational-transform/operational-transform.html

Conflict-free Replicated Data Types

Focuses on states

Commutative vs Convergent RDTs

Many (many, many) possible approaches
G-Set
OR-Set
LWW-Set

Many implementations focus on two

operations:

Merge - setwise union
Lookup - “meaningful” reduction

10

Example: NavCloud
OUR-Set

{
(id1, 1, “cat’, removed),
(id2, 2, “"dog”, removed)

}

Merge

{(id1, 5, "tiger"), (id2, 2, "dog", removed), (id3, 1, "ape") }
Lookup

{ "tiger", "ape" }

Source: Practical Demystification of CRDTs
https://speakerdeck.com/ajantis/practical-demystification-of-crdts-lambdadays-2016

11

https://speakerdeck.com/ajantis/practical-demystification-of-crdts-lambdadays-2016?slide=58

Firebase

Realtime tools

12

Two Solutions?

Realtime Database

2013 launch product
Joined Google 2014

Firestore

Developed at Google
“Best of RTDB and Google
Cloud Storage”

Beta ended Jan 31, 2019

13

Realtime Database

JSON-like data tree

Limits: 32 level max, 100,000 connections
Restricted querying capability

Queries are always deep”

Strong designh recommendation for shallow data
Overall: Recommended only situationally

*: Exception: REST queries can be shallow

14

Firestore

Collection-of-documents tree structure
Data held in document fields

Limits: 1IMB documents, <1MB fields
Rich query syntax

Queries are shallow by default

Overall: Recommended by default

15

Simplifying Realtime
Collaboration

Using a centralized authority

The Power of Ordering

Can we work around convergence?

SQL: “pessimistic” and “optimistic” locking
VSS/CVS: “locked” editable content
Central Authority + pseudo-OT

17

Pseudo-OT

What changes under a central authority?

Authoritative ordering

No need to guarantee operations applied in
a different order yield same result

Invert local operations before applying
remote ones

18

Example: ProseMirror

19

export function receiveTransaction(state, steps, clientIDs, options) ({

let collabState = collabKey.getState(state)

let version = collabState.version + steps.length

let ourID = collabKey.get(state) .spec.config.clientID

let ours = 0

while (ours < clientIDs.length && clientIDs[ours] == ourID) ++ours
let unconfirmed = collabState.unconfirmed.slice (ours)

steps = ours ? steps.slice(ours) : steps

if ('steps.length)

return state.tr.setMeta(collabKey, new CollabState (version, unconfirmed))

let nUnconfirmed = unconfirmed.length
let tr = state.tr
if (nUnconfirmed) {
unconfirmed = rebaseSteps (unconfirmed, steps, tr)
} else {
for (let i = 0; 1 < steps.length; i++) tr.step(steps[i])
unconfirmed = []
}
let newCollabState = new CollabState (version, unconfirmed)
return tr.setMeta ("rebased", nUnconfirmed)

.setMeta ("addToHistory", false) .setMeta(collabKey, newCollabState)

20

ProseMirror: State

let collabState = collabKey.getState (state)
let version = collabState.version + steps.length

let ourID = collabKey.get(state) .spec.config.clientID

21

ProseMirror: Steps

let ours = 0
while (ours < clientIDs.length && clientIDs[ours] == ourID)
++ours
let unconfirmed = collabState.unconfirmed.slice (ours)
steps = ours ? steps.slice(ours) : steps
if (!'steps.length)
return state.tr.setMeta (collabKey,

new CollabState (version, unconfirmed))

22

ProseMirror: Rebase

let nUnconfirmed = unconfirmed.length
let tr = state.tr

if (nUnconfirmed) {

unconfirmed = rebaseSteps (unconfirmed, steps, tr)
} else {

for (let i = 0; 1 < steps.length; i++) tr.step(steps[i])

unconfirmed = []

}

let newCollabState = new CollabState (version, unconfirmed)

23

Some Problems with
Pseudo-OT

Just in case you thought this would be
easy

Problem 1: Long Step List

Naive Approach:

1. Start with a known base state
2. Apply all changes from the beginning

Problem:

Eventually this takes a long time, especially in a browser
Solution:

“Reduce” step list to new known state

25

Problem 2: Steps vs States

Naive Approach:

1. Start with a known base state
2. Apply changes
3. Periodically roll up into new base state

Problem:

Steps must start from the new base state
Solution:

Tie the step number to the base state

26

Problem 3: Save Consistency

Naive Approach:

1. Start with a known base state
2. Apply changes
3. Rollup a new base state with step #

Problem:
New base states could contain “local” changes
Solution:

1. Server-side saves
2. Client-side transactions

27

Interactive Demo

Using JavaScript

Thanks!

Any questions?

You can find me at:
Twitter: @oldmanhero
mgb@perfectminutegames.com

29

https://twitter.com/oldmanhero?lang=en
mailto:mgb@perfectminutegames.com

Credits

Special thanks to all the people who made and released
these awesome resources for free:

Presentation template by SlidesCarnival
Photographs by Unsplash & Death to the Stock Photo

(license)

30

http://www.slidescarnival.com/
http://unsplash.com/
http://deathtothestockphoto.com/
http://deathtothestockphoto.com/wp-content/uploads/DeathtotheStockPhoto-License.pdf

