
Selenium 2019
Page Objects and Beyond

About This Talk
The original version of this talk was presented as an internal talk at Celtx in 2019
to introduce the software development staff to key concepts for implemented
automated testing using Selenium and the Page Object pattern.

It was subsequently revised and presented to members of the NDev software
development community in St. John’s, Newfoundland and Labrador in September
of 2019 as part of NDev meetup #40.

About Me: Mike Murphy-Burton
QA Automation Lead at Celtx

My first general test framework was xUnit for C#, VB

I’ve worked with a variety of tools for creating user-facing test tools:

- Selenium
- Fitnesse
- Robot
- Windows Journalling

A Brief History of Selenium

Testing tools
1990s and earlier: Largely bespoke, organization-dependent

1989-1998 - SUnit (Beck)

1996 - Extreme Programming (Beck, Cunningham, Jeffries)

1997 - JUnit

1998 - Mercury Interactive

2001 - Manifesto for Agile Software Development

2004 - Selenium

Selenium
Developed in 2004 at ThoughtWorks by Jason Huggins

The name is a joke at Mercury’s expense (prior to its acquisition by HP)

As of 2.0, Selenium uses the WebDriver architecture, which entered W3C
Recommendation as of 2018

Selenium

Java Example
class MyTestFixture {

WebDriver driver;
@BeforeEach
void setup() {

driver = new RemoteWebDriver(DesiredCapabilities.chrome());
}

@AfterEach
void teardown() {

driver.quit();
}

@Test
void testClickElement() {

WebElement el = driver.findElement(By.cssSelector(“tag.class.otherclass”));
el.click();
new WebDriverWait(driver, timeout).until(d -> meetsCondition(d));

}
}

Runners
JUnit

- Well-vetted and usually familiar to any Java dev
- Some support lacking (for example, repeat only on exceptions)
- However, large community tends to compensate

TestNG

- Heavily influenced by JUnit
- Growing adoption by automated testers
- More built-in support than JUnit
- Smaller overall community, so not as many options for plugging gaps (but with

JUnit 5, this is less of a concern)

WebDriver and DesiredCapabilities
WebDriver createLocalChromeDriver() {

return new ChromeDriver(new ChromeOptions());
}

WebDriver createRemoteDriver() {
DesiredCapabilities capabilities = DesiredCapabilities.chrome();
capabilities.setCapability(“version”, “65.0”);
Return new RemoteWebDriver(desiredCapabilities);

}

Chrome/Firefox/SafariDriver
Local driver binary files allow direct execution of tests against local browsers.

Test code has to know how to find the binary file!

Some mismatches in capabilities - Chrome’s experimental options, for example

May allow some otherwise unsupported calls - element.getPosition, for example

RemoteWebDriver
RemoteWebDriver allows the execution of tests against a Selenium server.

Running against BrowserStack, for example, requires using RemoteWebDriver.

Still need to specify browser name and version, but don’t need to have a driver
binary accessible to your test suite.

BrowserStack Example

DesiredCapabilities capabilities = DesiredCapabilities.chrome();
capabilities.setCapability(“browserstack.user”, “myusername”);
capabilities.setCapability(“browserstack.key”, “abc123”);

WebDriverWait
Because Selenium is automating systems from the user perspective, there’s a lot
of asynchronous behaviour and unpredictable timing involved.

WebDriverWait provides a fluent interface to define waits for specific states. It is
often combined with ExpectedConditions, which provides common wait
conditions, and By, which provides common locators.

Example:

new WebDriverWait(driver, 30).ignoring(NoSuchElementException.class)
.until(ExpectedConditions.visibilityOfElementLocatedBy(By.cssSelector(“div.class”)));

Actions
Sometimes you need complex input, or find that executing a particular input
command against an element is either flaky or non-functional.

Actions provide an alternate mode of executing input, and tend to be more stable
in terms of outcomes.

Actions Example

Actions actions = new Actions(driver);
actions.moveToElement(driver.findElement(By.cssSelector(“#threestateel”)))

.click().click()

.build().perform();

The Page Object Pattern

The Problem with Selenium
UI/UX tests are inherently brittle. Every redesign of a page can break tests.

Attempts have been made to mitigate this issue by clever HTML+CSS design as
well as the use of extended attributes like data-qa

Data-QA example:

<div class=”container etc” data-qa=”our.container.element”>
</div>

driver.findElement(By.cssSelector(“[data-qa=’our.container.element’]”));

The PageObject Approach
What if we don’t represent our UI directly in our tests, but instead focus on
functional representation? That is, instead of this:

driver.findElement(By.cssSelector(“button.ok”)).click();

We did:

PageObject.init(driver, MyPage.class)
.clickOK();

MyPage is a PageObject that represents a particular piece of a page or view.

Page Object Pattern
Page Objects provide a set of actions and a set of accessors. Actions allow the
test developer to change page state by, for example, opening a dialog. Accessors,
on the other hand, return information about the current state.

Action

myPage.addUser(newUser);

Accessor

List<UserData> users = myPage.getUsers();

Page Objects & Fluent Interfaces
Selenium tests consist of a series of actions interspersed with assertions against
the view state. Page Object actions return PageObjects to allow fluent tests

Example

class MyPage {
WebDriver driver;
MyPage(driver) {

this.driver = driver;
}

MyPage doSomething() {
makeAThingHappen();
Return this;

}
}

Test Cadence and Single Responsibility
Fluent interfaces introduce the opportunity to create monolithic method chains.

PageObject.init(driver, MyPage.class)
.doSomething().assertSomething()
.doSomethingElse().assertSomethingElse

This violates the SRP, however - MyPage will change both when the design of the
page changes and when the design of the test changes. A better pattern is:

MyPage sut = PageObject.init(driver,MyPage.class)
Data state = sut.doSomething().getState();
assertSomething(state)
Data nextState = sut.doSomethingElse().getState();
assertSomethingElse(nextState);

Flaky Tests & @Repeatable

Why Are Selenium Tests So Dang Flaky?
Fully integrated (or “system”) tests, particularly those involving a network, are
prone to failure, BUT we still need to validate the system from a user’s
perspective.

There are many reasons Selenium tests might fail:

- Network outage
- Slow performance
- JavaScript errors
- Uncaught ephemeral transition conditions

Some of these are “true” errors, but statistically you may see 1% or more “false
positives” in a suite that has a few hundred test methods -> WASTED TIME!

@RepeatedTest and @RepeatedIfExceptionsTest
Prior to JUnit 5, there were a large number of extensions that could change the
behaviour of test cases. Because of lifecycle changes in JUnit 5, many no longer
work, and there aren’t always updated options available.

JUnit 5 ships with @RepeatedTest, which will automatically repeat any given test
N times. This translates into a factor of N inflation in run time, which is
unacceptable for large, frequently-run suites.

Enter artsok and @RepeatedIfExceptionsTest

@RepeatedIfExceptionsTest(name = “My test - repetition {currentRepetition}, repeats = 3)

Interactive Demo

Page Object Limitations
PageObject extends the breakage horizon, but…

1. What if you radically change an interface component (toolbar vs dropdown
menu)

2. Some actions don’t map cleanly (login)
3. Sometimes you want to skip directly to a specific state

Other tools and approaches - such as sub-UI testing frameworks like Cypress -
handle one or more of these situations better than vanilla Page Objects

Further Study

Selenium 4
From a test dev perspective, this is a relatively minor upgrade

Key Changes

- WebDriver conforms to W3C standard
- Selenium Grid upgrades, particularly for containerized grid nodes.
- Significant changes to DesiredCapabilities for various browsers
- Replacement of getSize/getPosition with getRect

“Record” tests in browser

Captures multiple locators (but not data-qas)

Very ugly output (driver.findElement(By.cssSelector(".class")).click();)

Replay locally or remotely against multiple browsers

Very, very ugly output (vars.put("win4279", waitForWindow(2000));)

Supports further extension via WebExtension standard

Very, very, very ugly output (js.executeScript("if(arguments[0].contentEditable
=== 'true') {arguments[0].innerText = <big lump of HTML>}", element);)

Selenium IDE

WebDriverIO
Reimplementation of the WebDriver standard with advanced functionality

Runs on Node.JS

Native Applitools integration

Visual Regression Testing
Particularly as machine vision evolves, I think this is very likely to largely replace
Selenium et al in the next 10 years

LOTS of options - BackstopJS, Wraith, Percy, Applitools

Recommended talk: Spot the Difference - https://www.youtube.com/watch?v=zCln-Cj_qyg

https://www.youtube.com/watch?v=zCln-Cj_qyg

